A Query Language Based on the Ambient Logic

Luca Cardelli

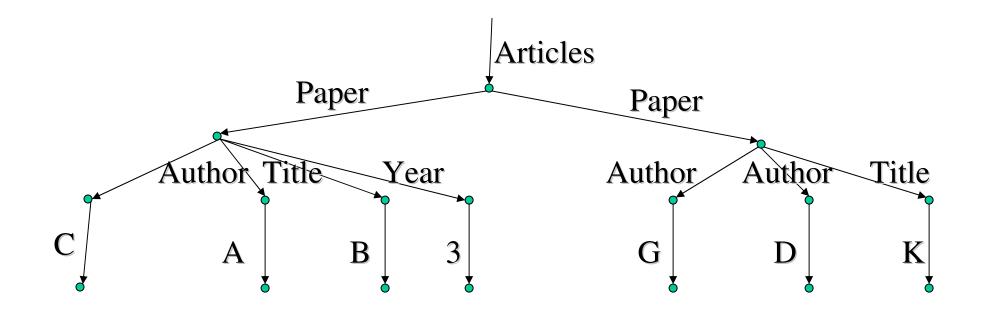
Microsoft Research

Giorgio Ghelli

University of Pisa

2001-07-06 Concoord - Lipari

Semistructured Data



- A tree (or graph), unordered (or ordered).
- Invented for "flexible" data representation (just like S-expressions...) for semi-irregular data like address books and bibliographies.
- Adopted by the DB community for the purpose of merging databases from different uncoordinated sources (without a common schema). Typically, web data that belongs to different institutions.

Unusual Data

- Not really arrays/lists:
 - Many children with the same label, instead of indexed children.
 - Mixture of repeated and non repeated labels under a node.
- Not really records:
 - Many children with the same label.
 - Missing/additional fields with no tagging information.
- Not really variants:
 - Labeled but untagged unions.
- Unusual data.
 - Yet, it aims to be the new universal standard for interoperability of programming languages, databases, e-commerce...

Unusual Data Manipulation

- New "flexible" type theories are required.
 - Based on the "effects" of processes over trees (Ambient Types).
 - Based on tree automata (Xduce).
- New processing languages required.
 - Xduce.
 - Various web scripting abominations.
- New query languages required. Various approaches.
 - From simple: Query existence of paths through the tree.
 - To fuzzy: Query whether a tree is kind of similar to another one.
 - To fancy: Query whether a tree is produced by a tree grammar.
 - To popular: "SQL for trees/graphs".

Analogies

- An accidental(?) similarity between two areas:
- Semistructured Data is the way it is because:
 - *"You cannot rely on uniform structure"* of data. Must abandon schemas based on records and tables.
 - Adopt "self-describing" data structures: Use edge-labeled trees (or graphs).
- Mobile Computation is the way it is because:
 - *"You cannot rely on static structure"* of networks. Must abandon type systems based on records and disjoint unions.
 - Adopt "self-describing" network structures: Use edge-labeled trees (or graphs) of locations and agents.
- Both arose out of the Internet, because things there are just too dynamic for traditional notions of data and computation.

Relevance to Concurrency and Coordination

- Immediate implication: a new, uniform, model of data and computation on the Web, with opportunities for cross-fertilization:
 - Programming technology can be used to typecheck, navigate, and transform both dynamic network structures and the semistructured data they contain. Uniformly.
 - Database technology can be used to search through both dynamic network structures ("resource discovery"), and the semistructured data they contain. Uniformly.
- This convergence is still a dream, but it did motivate us to apply a particular technology developed for mobile computation to semistructured data:
 - Specification Logic \rightarrow Query Logic

Concepts

- Information trees $I \in \mathcal{PT}$ (semistructured data)
- Information terms **F** (denoting information trees)
- Formulas \mathcal{A} (denoting sets of information trees)
- A semantics of terms $\llbracket F \rrbracket \in \mathcal{T}$
- A semantics of formulas $\llbracket \mathcal{A} \rrbracket \subseteq \mathcal{F}$
- A satisfaction (i.e. matching) relation $F \models \mathcal{A}$ (i.e. $\llbracket F \rrbracket \in \llbracket \mathcal{A} \rrbracket$)
- A query language Q (including from $F \vDash \mathcal{A}$ select Q')
- A (naïve) query semantics $\llbracket Q \rrbracket \in \mathcal{T}$
- A *table algebra* for matching evaluation (i.e. for $F \models \mathcal{P}$)
- A (refined) query semantics / query evaluation procedure for *Q*, based on the table algebra. Correct w.r.t. [*Q*].

Semantics: Information Trees

- Our semantic model for semistructured data: unordered edge-labeled finite-depth trees.
- Just to make it precise:
 - Λ is a countable collection of *labels*; *m*, *n*,
 - **T** is the collection of *information trees* **I**:
 - The empty multiset, {}⁺ is in *I*.
 A root.
 - If *m* is in Λ and *I* is in *I*, then the singleton multiset {(*m*, *I*)} is in *I*.
 An edge labeled *m*, leading to *I*.
 - \mathcal{T} is closed under multiset union $\bigcup_{j \in J} I_j$, where J is a (possibly infinite) index set. The root-merge of all the I_j .

Syntax: Information Terms

<i>F</i> ::=	
0	denoting the empty multiset
<i>m</i> [<i>F</i>]	denoting a singleton multiset
FIF	denoting binary multiset union

[[0]]	≜	0	where 0		{}+
[<i>m</i> [<i>F</i>]]	≜	<i>m</i> [[<i>F</i>]]	where <i>m</i>	n[I] 🛔	$\{\langle m, I \rangle\}^+$
[[<i>F</i> " <i>F</i> "]]	≜	[[<i>F</i> "]] [[<i>F</i> ""]]	where I	"∣ <i>I</i> " ≜	<i>I</i> ' ∪+ <i>I</i> "

- Often, *m*[0] is written *m*[], or simply *m*.
- Define an equivalence \equiv such that $F \equiv F'$ iff $\llbracket F \rrbracket = \llbracket F' \rrbracket$.

 $F \equiv F'$ iff $\llbracket F \rrbracket = \llbracket F' \rrbracket$

N.B.: $F \mid F' \neq F$ (these are multisets)

 $(F \mid F') \mid F'' \equiv F \mid (F' \mid F'')$

 $F \mid F' \equiv F' \mid F$

 $F \mid \mathbf{0} \equiv F$

 $F \equiv F' \implies m[F] \equiv m[F']$ $F \equiv F' \implies F \mid F'' \equiv F' \mid F''$

 $F \equiv F', F' \equiv F'' \implies F \equiv F''$

 $F \equiv F$

 $F \equiv F' \Rightarrow F' \equiv F$

Equivalence of Information Term

Example

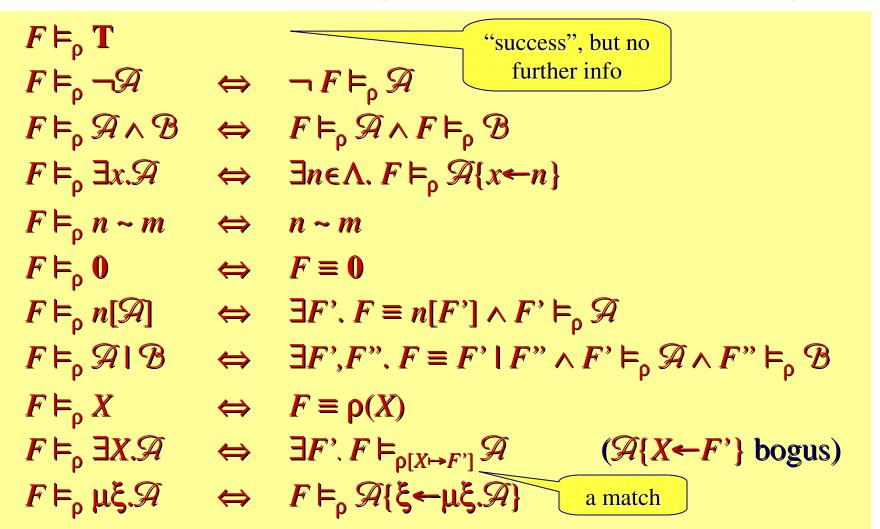
Articles[Paper[Author[Cardelli] | Author[Gordon] | Title [Anywhere] Year[2000] | Conf[POPL] ון Paper[Author[Ghelli] | Title[Recursive] | Proceedings[VLDB] | Year[1998] | Editor[SV]]

The Query Logic

$\mathcal{A}, \mathcal{B} \in \Phi ::=$	Formulas	(η is a name <i>n</i> or a variable <i>x</i>)
Τ	true	
$\neg \mathcal{A}$	negation	
$\mathcal{A} \wedge \mathcal{B}$	conjunction	
Ex.A	existential of	uantification over label variables
η ~ η'	label compa	rison (e.g. equality, regexp match)
0	root	
η[A]	edge	
A B	composition	n
X	tree variable	3
R.XE	existential c	uantification over tree variables
ξ	recursion va	ariable
μξ.Ά	recursive fo	rmula (least fixpoint)
	ξ may oc	cur only <i>positively</i> in <i>A</i>

Satisfaction (first try)

• "Match a database F to a query \mathcal{P} , collect matches in ρ ."



• However, this is not a well-formed definition of $F \vDash_{\rho} \mathcal{A}$, because the μ case is circular. We need a proper semantics of fixpoints.

Example: Search

- Search:
 - "Find one of my articles (ignore non-articles); bind to *X* all info under the *article* label":

 $S = \exists X. article[(author[Cardelli] | T) \land X] | T$

• Can use recursive formulas to search deeper:

μξ. $S \lor \exists x. (x[\xi] | \mathbf{T})$

- Not a query language yet.
 - It searches for one instance, not all instances.
 - Some *collecting* primitive must be added. This is going to be based on the logical notion of *satisfaction*.
- N.B.: $\exists X.\mathcal{A}$ is, logically, a bit strange:
 - *X* denotes a *singleton* set of trees (the match), not a general set of trees like a regular formula.

Example: Path Expressions

• Various kinds of path expressions can be defined:

pq[A]	≜	p[q[A]]	path concatenation
p*[A]	≜	μξ. $\mathcal{A} \lor p[\xi]$	path iteration
$(p \lor q)[\mathcal{R}]$	≜	$p[\mathcal{A}] \lor q[\mathcal{A}]$	path disjunction
$p(X)[\mathcal{A}]$	≜	$p[X \wedge \mathcal{A}]$	binding the tree at the end
.η[Я]	≜	$(\exists x. x \sim \eta \land x[\mathscr{A}]) \mid \mathbf{T}$	some η leads to \mathcal{P}
.¬η[A]	≜	$(\exists x. \neg x \sim \eta \land x[\mathscr{R}]) \mid \mathbf{T}$	some non- η leads to \mathcal{A}
!η[<i>Я</i>]	≜	$(\forall x. x \sim \eta \Rightarrow x [\Rightarrow \mathcal{A}]) \mid$	F all η lead to \mathcal{P}
etc.			

"X is an article that deals with SSD, or from each one can reach, through citations, an article that deals with SSD":
 .article(X)(.cites.article)*.keyword[SSD]

Example: Schemas

- A logic is a "very rich type system". Hence we can comfortably represent various kinds of schemas.
 - However, extensions (or unpleasant encodings) are required for ordered data: $\mathcal{A} \mid \mathcal{B}$ vs. \mathcal{A} ; \mathcal{B} .
- Ex.: Xduce-like schemas:

0	the empty tree	
ЯIВ	an \mathcal{A} next to a \mathcal{B}	
$\mathcal{A} \lor \mathcal{B}$	either an \mathcal{A} or a \mathcal{B}	3
n[A]	an edge <i>n</i> leading	to an \mathcal{R}
\mathcal{A}^*	≜ μξ.0 ∨ (<i>Ά</i> Ι ξ)	the merge of zero or more \mathcal{P} s
\mathscr{R}^+	≜ <i>Я</i> <i>Я</i> *	the merge of one or more \mathcal{R} s
$\mathcal{A}^{?}$	$\triangleq 0 \lor \mathcal{A}$	zero or one \mathcal{P}

Semantics

[[T]] _{ρ,δ}	≜	$\mathcal{T} \qquad F \vDash_{\rho,\delta} \mathcal{R} \triangleq \llbracket F \rrbracket \in \llbracket \mathcal{R} \rrbracket_{\rho,\delta}$
$\llbracket \neg \mathscr{A} \rrbracket_{\rho,\delta}$	≜	$\mathcal{T} \setminus \llbracket \mathcal{A} \rrbracket_{\rho,\delta}$
$\llbracket \mathcal{A} \land \mathcal{B} \rrbracket_{\rho,\delta}$	≜	$\llbracket \mathscr{A} \rrbracket_{\rho,\delta} \cap \llbracket \mathscr{B} \rrbracket_{\rho,\delta}$
$\llbracket \exists x. \mathscr{A} \rrbracket_{\rho, \delta}$		$\bigcup_{n \in \Lambda} \llbracket \mathscr{A} \rrbracket_{\rho[x \mapsto n], \delta}$
[[η ~ η']]_{ρ,δ}	≜	<i>if</i> ρ(η) ~ ρ(η') <i>then IT else</i> {}
[[0]] _{ρ,δ}	≜	{0}
[[η[<i>Ά</i>]]] _{ρ,δ}	≜	((// E a u u u),0)
[[A B]] _{p,δ}	≜	$\{I \mid I' \parallel I \in \llbracket \mathscr{A} \rrbracket_{\rho,\delta} \land I' \in \llbracket \mathscr{B} \rrbracket_{\rho,\delta}\}$
[[X]] _{ρ,δ}	≜	$\{\rho(X)\}$
[[∃ <i>X</i> .𝟸]] _{ρ,δ}	≜	$\bigcup_{I \in \mathcal{T}} [\mathcal{P}]_{\rho[X \mapsto I], \delta}$
[[ξ]] _{ρ,δ}	≜	δ(ξ)
[[μξ. Ά]] _{ρ,δ}	≜	$\bigcap \{ S \subseteq \mathcal{T} \mid S \supseteq [\![\mathcal{A}]\!]_{\rho, \delta[\xi \mapsto S]} \}$

 $\llbracket \exists \epsilon \Phi \times ((Nvar \cup \Lambda \to \Lambda) \cup (Tvar \to \mathcal{PT})) \times (Rvar \to \mathcal{PPT})) \to \mathcal{PPT}$

Derived Operators

F	≜	$\neg T$	falsity
$\mathcal{A} \lor \mathcal{B}$	≜	$\neg(\neg \mathcal{A} \land \neg \mathcal{B})$	disjunction
η ≁ η'	≜	¬(η ~ η')	label diversity
$\forall x. \mathcal{A}$	≜	$\neg \exists x. \neg \mathscr{A}$	universal name quantification
$\forall X. \mathcal{R}$	≜	¬∃ <i>Χ</i> .¬Я	universal tree quantification
νξ.Ά	≜	-μξΆ{ξ←-ξ}	maximal fixpoint
1	≜	-0	non-empty
1 η[⇒Я]		¬0 ¬(η[¬Я])	non-empty edge implication
1 η[⇒ℛ]			1
1 η[⇒Я] Я∥В			edge implication

Dualization

• We can dualize all operators.

 $\begin{array}{ll} \neg \mathbf{0} \leadsto \mathbf{1} & \neg \mathbf{1} \leadsto \mathbf{0} \\ \neg \eta[\mathcal{A}] \leadsto \eta[\Rightarrow \neg \mathcal{A}] & \neg \eta[\Rightarrow \mathcal{A}] \leadsto \eta[\neg \mathcal{A}] \\ \neg (\mathcal{A} \mid \mathcal{B}) \leadsto \neg \mathcal{A} \mid \neg \mathcal{B} & \neg (\mathcal{A} \mid \mathcal{B}) \leadsto \neg \mathcal{A} \mid \neg \mathcal{B} \\ \neg \mathbf{v} \xi. \mathcal{A} \leadsto \mu \xi. \neg \mathcal{A} \{\xi \leftarrow \neg \xi\} & \neg \mu \xi. \mathcal{A} \leadsto \mathbf{v} \xi. \neg \mathcal{A} \{\xi \leftarrow \neg \xi\} \end{array}$

- Plus the usual DeMorgan laws.
- This gives us an implementation strategy for $\neg \mathcal{A}$.
 - If we take the dual operators as primitive and implement them directly, we can then "push negation to the leaves".

Logical Equations

- We can commute/distribute/simplify many operators.
 - This gives us opportunities for query optimization.

η[A]	$\Leftrightarrow \ \eta[\mathbf{T}] \land \eta[\Rightarrow \mathcal{R}]$	η[⇒Я]	$\Leftrightarrow \ \eta[\mathbf{T}] \Rightarrow \eta[\mathcal{R}]$
η[F]	\Leftrightarrow F	η[⇒T]	\Leftrightarrow T
η[A ^ B]	⇔ η[T] ∧ η[ℬ]	η[⇒ℋ∨ℬ]	$\Leftrightarrow \ \eta[\Rightarrow \mathscr{R}] \lor \eta[\Rightarrow \mathscr{B}]$
$\eta[\mathcal{A} \lor \mathcal{B}]$	$\Leftrightarrow \ \eta[\mathscr{R}] \lor \eta[\mathscr{B}]$	η[⇒ℛ∧ℬ]	$\Leftrightarrow \ \eta[\Rightarrow \mathcal{R}] \land \eta[\Rightarrow \mathcal{B}]$
ЯIF	\Leftrightarrow F	𝗐 II T	\Leftrightarrow T
TIT	\Leftrightarrow T	$\mathbf{F} \parallel \mathbf{F}$	\Leftrightarrow F
AIO	$\Leftrightarrow \ \mathcal{A}$	ℋ∥1	$\Leftrightarrow \ \mathcal{R}$
AIB	$\Leftrightarrow \mathcal{B} \mathcal{A}$	A II B	$\Leftrightarrow \mathcal{B} \ \mathcal{A}$
(AB) C	$\Leftrightarrow \mathscr{A}(\mathscr{B} \mathcal{C})$	(A B) C	$\Leftrightarrow \mathcal{A} \parallel (\mathcal{B} \parallel \mathcal{C})$

• Dualization and other manipulations are based on logically valid equations; these have been studied extensively for the original Ambient Logic.

The Query Language

<i>Q</i> ::=	Query
from $Q \vDash \mathcal{A}$ select Q'	match and collect
X	matching variable
0	empty result
η[<i>Q</i>]	nesting of result
QIQ'	composition of results
<i>f</i> (<i>Q</i>)	tree functions (for extensibility)

• from $Q \vDash \mathcal{A}$ select Q'

All the matches of Q with \mathcal{A} are computed, producing bindings for the x and X variables that are free in \mathcal{A} . The result expression Q' is evaluated for each (<u>distinct</u>!) such binding, and all the results are merged by |.

• N.B.: This general approach to building a query language Q for a logic \mathcal{A} , is fairly independent from the details of the logic.

Query Examples

• Joins

Merge info about persons from two db's:

from $db1 \models person[name[X^{\lambda}] | Y^{\lambda}] | T$ select from $db2 \models person[name[X] | Z^{\lambda}] | T$ select person[name[X] | Y | Z]

• Restructuring

Rearrange publications from by-article to by-year, for each distinct year (i.e., for each distinct binding of X):

```
from db ⊨ .article[.year[X<sup>λ</sup>]] select

publications-by-year[

year[X] |

from db ⊨ .article[year[X] | Z<sup>λ</sup>] select article[Z]]
```

Z binds all fields except *year*; this is rather unusual in QL's

^{*\lambda*}: binding occurrence

Query Examples

• Recursion

Find all email (or e-mail) addresses:

from $db \models \mu\xi$. .email[X^{λ}] \lor .e-mail[X^{λ}] $\lor \exists x. .x[\xi]$ select email[X]

• Unsafe queries

To be avoided by static or dynamic detection:

from $db \models (male[X^{\lambda?}] \lor female[Y^{\lambda?}]) \mid \mathbf{T}$ select $X^{?} \mid Y^{?}$

from $db \models \neg author[X^{\lambda?}]$ select $X^?$

Reference Query Semantics

- Schemas (for rows and tables)
 - $\mathbf{V} = V_1 \dots V_n$ is a collection of distinct variables: either label variables x or tree variables X.
- Rows (or Valuations)

 ρ^{V} is a row with schema V: it maps each variable in V to a value of the appropriate kind (label or tree).

- A row can be seen as the result of a match, or as an environment in which to evaluate further matches.
- Tables (or Relations)
 - A set of rows with a common schema V is called a table. That is, V names the columns of the table.
- Query Semantics $[\![Q]\!]_{\rho}\mathbf{v}$
 - Produces a tree: the result of the query Q, where ρ^{V} is used as an environment for the free variables of Q (included in V).

Reference Query Semantics

- $[X]_{\rho} v \triangleq \rho^{v}(X)$
- $\llbracket \mathbf{0} \rrbracket_{\rho} \mathbf{v} \triangleq \mathbf{0}$

 $\llbracket f(Q) \rrbracket_{o} \mathbf{v}$

 $\begin{bmatrix} \eta[Q] \end{bmatrix}_{\rho} \mathbf{v} \triangleq \rho^{\mathbf{v}}(\eta) \begin{bmatrix} \mathbb{Q} \end{bmatrix}_{\rho} \mathbf{v} \\ \begin{bmatrix} Q \mid Q^{2} \end{bmatrix}_{\rho} \mathbf{v} \triangleq \begin{bmatrix} Q \end{bmatrix}_{\rho} \mathbf{v} \mid \begin{bmatrix} Q^{2} \end{bmatrix}_{\rho} \mathbf{v}$

 $\triangleq f(\llbracket Q \rrbracket_{\mathsf{p}} \mathbf{v})$

 $(\rho^{\mathbf{V}}(n) \triangleq n)$

 $\begin{aligned} \|from \ Q \vDash \mathcal{A} select \ Q' \|_{\rho} v & \triangleq \\ \bigcup^{+} \mathbf{for} \ \rho'^{V'} \supseteq \rho^{V} \mathbf{s.t.} \ V' = V \cup FV(\mathcal{A}) \land \|Q\|_{\rho} v \in \|\mathcal{A}\|_{\rho'} v_{,\emptyset} \\ & \mathbf{of} \ \|Q'\|_{\rho'} v' \end{aligned}$

- $[from Q \vDash \mathcal{A} select Q']_{\rho}v$

Consider all the valuations ρ ' that extend the current valuation ρ with the (still-free) variables of \mathcal{A} , and such that Q matches \mathcal{A} under the appropriate valuations. For all such (distinct) valuations, compute Q' and put all the results in parallel.

Just a "reference" semantics

- The reference semantics is clean, but is hopelessly inefficient.
 - Literally, it requires computing beforehand a potentially infinite set of ρ[•]V[•]⊇ρ^V, which are then filtered by *checking* that [[Q]]_ρv ∈ [[A]]_ρ, v_{•,Ø}. The ρ[•]V[•] that survive (hopefully a finite set) are used to build the result.
 - It should be much better to compute this (hopefully) finite set of useful ρ'V' on the fly, by *matching Q* to *A*.
- This idea leads to a *table algebra*, used for building the relevant valuations while matching Q to \mathcal{A} , and to a refined evaluation procedure.

The Table Algebra

• A relational-style algebra for *relations over labels & trees*:

1 ^v		the largest table with schema V			
$R^{\mathbf{V}} \cup^{\mathbf{V}} R^{\mathbf{v}}$	≜	$R^{\mathbf{V}} \cup R^{\mathbf{V}}$	\subseteq	1 ^v	
$Co^{\mathbf{V}}(\mathbf{R}^{\mathbf{V}})$	≜	$\mathbf{1^V} \setminus R^V$		1 ^v	
$R^{\mathbf{V}} \times^{\mathbf{V},\mathbf{V}'} R^{\mathbf{V}'}$	≜	{ρ;ρ' [ρ∈ <i>R</i> ^V , ρ' ∈ <i>R</i> ' ^V }		1^V∪V '	(V∩V'=ø)
Π ^V _V , <i>R</i> ^V	≜	$\{\rho^{*} \in \mathbb{1}^{V^{*}} \mid \exists \rho \in \mathbb{R}^{V}. \rho \supseteq \rho^{*} \}$		1 ^V '	(V '⊆ V)
$\sigma^{V}_{\eta \sim \eta}, R^{V}$	≜	$\{\rho \in \mathbb{R}^{\mathbb{V}} \mid , \rho^{\mathbb{V}}(\eta) \sim \rho^{\mathbb{V}}(\eta^{*}) \}$	}⊆	1 ^V	(<i>FV</i> (η,η') ⊆V)

• Derived operators

...

 $\begin{aligned} Ext^{V}{}_{V'}(R^{V}) &\triangleq R^{V} \times^{V,V'\setminus V} \mathbf{1}^{V'\setminus V} &\subseteq \mathbf{1}^{V'} (V \subseteq V') \\ R^{V} \cap^{V} R^{*V} &\triangleq Co^{V}(Co^{V}(R^{V}) \cup^{V} Co^{V}(R^{*V})) &\subseteq \mathbf{1}^{V} \\ R^{V} \bowtie^{V \cup V'} R^{*V'} &\triangleq Ext^{V}{}_{V \cup V'}(R^{V}) \cap^{V \cup V'} Ext^{V'}{}_{V \cup V'}(R^{*V'}) &\subseteq \mathbf{1}^{V \cup V'} \end{aligned}$

Query Evaluation

- We define a refined query semantics:
 - A procedure $Q(Q)_{\rho}v$ that evaluate queries, uses a procedure $B(I, \mathcal{A})_{\rho}v$ to evaluate binders $Q \models \mathcal{A}$ in the *from-select* case.
 - $B(I, \mathcal{P})_{\rho}v$ produces a table, and is computed using the table algebra operators.
 - Natural join, ⋈, takes the role of "unification" for match-variables in binders.
- Some cases (simplified for non-recursive formulas):

 $\begin{aligned} & \mathsf{Q}(from \ Q \vDash \mathcal{A} select \ Q')_{\rho} \mathsf{v} & \triangleq \\ & let \ I = \mathsf{Q}(Q)_{\rho} \mathsf{v} \ and \ \mathcal{R}^{FV(\mathcal{R}) \setminus \mathsf{V}} = \mathsf{B}(I, \ \mathcal{R})_{\rho} \mathsf{v} \ in \ \bigcup^{+}_{\rho' \in \mathcal{R}} \mathsf{Q}(Q')_{(\rho} \mathsf{v}_{; \rho')} \\ & \mathsf{B}(I, \neg \mathcal{R})_{\rho} \mathsf{v} & \triangleq \quad Co^{FV(\mathcal{R}) \setminus \mathsf{V}} (\mathsf{B}(I, \ \mathcal{R})_{\rho} \mathsf{v}) \\ & \mathsf{B}(I, \ \mathcal{R} \wedge \mathcal{B})_{\rho} \mathsf{v} & \triangleq \quad \mathsf{B}(I, \ \mathcal{R})_{\rho} \mathsf{v} \bowtie^{FV(\mathcal{R}) \setminus \mathsf{V}, FV(\mathcal{B}) \setminus \mathsf{V}} \mathsf{B}(I, \ \mathcal{B})_{\rho} \mathsf{v} \\ & \mathsf{B}(I, \ \exists X. \mathcal{R})_{\rho} \mathsf{v} & \triangleq \quad \Pi^{FV(\mathcal{R}) \setminus \mathsf{V}}_{FV(\mathcal{R}) \setminus \mathsf{V} \setminus \{X\}} \mathsf{B}(I, \ \mathcal{R})_{\rho} \mathsf{v} \end{aligned}$

Correctness Theorem

- I.e., instead of computing the set [[A]], as in the reference semantics, and checking at the end whether *I* is in [[A]], we process *I* and A together in **B**, step by step.
- The table algebra is still specified rather abstractly. Any particular implementation of the table algebra yields an implementation of B, and hence of the query procedure Q.
- Correctness: the query evaluation procedure conforms to the reference semantics, so it is correct:

 $\forall Q. \forall \mathbf{V} \supseteq FV(Q). \forall \rho^{\mathbf{V}}. \quad \mathbf{Q}(Q)_{\rho} \mathbf{v} = \llbracket Q \rrbracket_{\rho} \mathbf{v}$

By a simple induction, with a non-trivial lemma in the recursive formulas case.

What's left out

- Effective implementations of the table algebra:
 - In general, the tables manipulated by **B** can get infinite, e.g. for unsafe queries, or for negation (may be ok if final result is finite).
 - To supply a real implementation, one must provide a *concrete* (*sub-)algebra* that provides a particular, efficient, representation of tables, and of the operators over them. Some techniques:
 - Eliminate unsafe queries by static or dynamic checks.
 - Implement important derived operators directly (typically ⋈, which behaves finitely over finite tables).
 - Push negation to the leaves (define **B** over dualized logical operators, map them to the algebra).
 - Represent certain infinite tables by finite means (e.g. by constraints) and define the operators to work over those.
 - These techniques are being investigated in an implementation (**TQL**) that Giorgio Ghelli is carrying out in Pisa.

Conclusions

- There are many proposals for SSD query languages. Given the power of recursive formulas, we think we can capture many of them (certainly not all), and at least identify a natural spot in design space.
- We have investigated the notion of *SSD query algebra*, which has been missing for too long. (Other proposals are now emerging.)
- We have provided a query language for SSD, a set of logical optimization/rewrite rules, a reference semantics, a query algebra, a specification of algebra-based implementations, and a correctness theorem for the specification w.r.t. the reference semantics.
 - L.Cardelli, G.Ghelli: A query language based on the ambient logic. Proc. ESOP'01 (invited paper). http://www.luca.demon.co.uk
 - G.Ghelli: *Evaluation of TQL queries*. To appear. http://www.di.unipi.it/~ghelli/papers.html